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Nonlinear spin to charge conversion in mesoscopic structures
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Motivated by recent experiments [I. J. Vera-Marun, V. Ranjan, and B. J. van Wees, Nat. Phys. 8, 313 (2012)],
we formulate a nonlinear theory of spin transport in quantum coherent conductors. We show how a mesoscopic
constriction with energy-dependent transmission can convert a spin current injected by a spin accumulation
into an electric signal, relying neither on magnetic nor exchange fields. When the transmission through the
constriction is spin independent, the spin-charge coupling is nonlinear, with an electric signal that is quadratic
in the accumulation. We estimate that gated mesoscopic constrictions have a sensitivity that allows to detect
accumulations much smaller than a percent of the Fermi energy.
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Introduction. Spin current detection and measurement pro-
tocols are for the most part based on ferromagnetic contacts1–7

or Zeeman fields.8–11 While efficient and well controlled,
these schemes are not optimized for miniaturization, because
exchange and magnetic fields have low spatial resolution
and because they cannot detect the weak spin accumulations
achievable in two-dimensional electron gases such as GaAs
heterostructures, the platform of choice for submicron spin-
tronics. To unleash the full potential of spintronics at the
nanoscale, it is therefore imperative to find novel, all-electric
protocols. In submicron structures, however, reciprocity and
other symmetry relations constrain the detection of spin
currents in the linear response regime.12–14 In the absence
of time-reversal symmetry breaking field and focusing on
two-terminal geometries, these constraining rules can only be
waived by going beyond the linear response regime. At the
nanoscale, this presents important theoretical challenges as
local electric potentials must be determined self-consistently
to ensure gauge invariance.15

In this Rapid Communication we construct a mean-field
nonlinear theory of spin transport through submicron scale
structures. We use it to propose a protocol which converts
the spin current injected by a spin accumulation into a charge
signal via the energy-dependent transmission of a mesoscopic
structure. While our scheme is general, we focus our discussion
on quantum point contacts and Coulomb-blockaded quantum
dots, whose transmission is easily tunable by electric gate
potentials. We show that the electric response is quadratic in
the spin accumulation δμ when the transmission is energy
dependent. A linear response arises only if the transmission is
spin dependent, which usually requires an external magnetic
field. We foresee that our scheme has sufficient sensitivity
to detect weak spin accumulations such as those that can be
generated magnetoelectrically in GaAs heterostructures,16 to
which the magnetic spin detection schemes are notoriously
difficult to apply.

We consider the standard measurement setup depicted
in Fig. 1. One aims to detect the nonequilibrium spin
accumulation drop below the two terminals, δμs1 �= δμs2,

as an electric signal. The spin accumulation origin is not
specified, be it ferromagnetic, magnetoelectric, or optical. A
recent pioneering work, Ref. 17, demonstrated that nonlinear
effects make the detection possible in graphene even without
using ferromagnetic terminals, on which the linear Johnson-
Silsbee method relies.3 A voltage quadratic in the spin
accumulation arises due to the energy dependence of the
graphene conductivity near the Dirac point. The bottom line of
our theory is that, while the drift-diffusion approach of Ref. 17
is appropriate for bulk systems, it cannot be directly exported to
submicron structures, where gauge invariance requires special
care.15 Furthermore, unlike in graphene, the density of states
in GaAs heterostructures is mostly energy independent, thus
nonlinear effects emerge only if further constrictions induce
energy-dependent transmission T (E). The constriction, such
as a Coulomb-blockaded quantum dot, a resonant tunneling
barrier, or a quantum point contact (QPC), is the active
element in our scheme, converting the spin to charge in
proportion to ∂ET (E). This quantity (and this is the crucial
point) is fully tunable electrically and independently of the spin
accumulation itself, providing our method with the versatility
necessary for practical spintronics.

Theory calculation. We model the detection circuit in
Fig. 1 as a quantum scatterer connected to two electron
reservoirs, each with its own electrochemical potential and spin
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FIG. 1. Measurement scheme: A mesoscopic constriction sep-
arates two nonmagnetic terminals with spin accumulations δμs1,2.
The transmission coefficient through the constriction is gate tunable
(voltage Vg), and when it is energy dependent, an electric signal that
is nonlinear in δμs1,2 arises.
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accumulation, via two leads. We start by writing the current
in lead i = 1,2 in the spin subband σ = ↑, ↓ (alternatively
σ = ±1)15

I σ
i = e

h

∫
dE

∑
jσ ′

{
Nσ

i δσσ ′δij − T σσ ′
ij [E,U (r)]

}
f σ ′

j (E). (1)

The transmission T σσ ′
ij = ∑

αβ T σ σ ′
iαjβ is a sum over probabilities

that a particle with spin σ ′ injected from transversal channel β

in lead j exits the system with spin σ into channel α in lead i.
It depends on the particle energy E and the local electrostatic
potential U (r). We consider a spin conserving transmission
T σσ ′ ∝ δσσ ′ with

T σσ
12 (E) = T (E) + σδT (E). (2)

Neglecting spin-flip terms is consistent with the constriction
dimensions being much smaller than the spin-orbit length
(a few microns in GaAs). For a spin-insensitive structure, the
transmission difference is zero, δT = 0, and T = T ↑↑ = T ↓↓.
Each lead is characterized by the number Nσ

i of transmission
channels it carries (whose weak energy dependence we
neglect), and the particle distribution f σ

i (E) = f (E − μσ
i ),

at the corresponding terminal, with the Fermi function f (x) =
{exp[(x − μF )/kBT ] + 1}−1. The electrochemical potential
of the spin subband σ , measured from the Fermi energy μF ,
is (e is the electron charge)

μσ
i = eVi + σ δμsi, (3)

where Vi is the applied voltage.
Equation (1) is current conserving due to the unitarity

condition
∑

j,σ T σσ ′
ji = Nσ ′

i . To guarantee gauge invariance
(i.e., that currents are invariant under an overall voltage shift)
one has to take into account that U (r) is a function of the
applied voltages. Up to second order in μ’s, the current is15

I σ
1 = e

h

∫
dE [−∂Ef (E)]

{
T σσ

12 (E)
(
μσ

1 − μσ
2

)

+ (1/2)∂ET σσ
12 (E)

[(
μσ

1

)2 − (
μσ

2

)2]

+
∫

dr
[
δU (r)T

σσ
12 (E)

]
δU (r)

(
μσ

1 − μσ
2

)}
. (4)

Though the first linear term is explicitly gauge invariant,
self-consistent conditions have to be imposed on U (r) in order
to ensure that the nonlinear terms also are gauge invariant. This
is taken care of by the last term where the functional derivative
of the transmission with respect to U (r) couples to the
deviation of the electrostatic profile from its equilibrium value
U (r) = Ueq(r) + δU (r). The deviation δU (r), which results
from applied voltages and spin accumulations and the way
they are injected into the scattering region, can be parametrized
by characteristic potentials,15 which generally speaking are
determined by self-consistent solutions to the Schrödinger and
Poisson equations. To restrain from these (here unnecessary)
complications we neglect the spatial dependence of the
potential changes δU (r) = δU and calculate the functional
derivative of T σσ ′

12 using the identity∫
dr

[
δU (r)T

σσ ′
12 (E)

] = −e∂ET σσ ′
12 (E). (5)

To solve for δU , we assume a symmetric probe, with equal,
spin-independent coupling to both leads,

e δU = (μ↑
1 + μ

↓
1 + μ

↑
2 + μ

↓
2 )/4. (6)

Using Eqs. (2)–(6) we get our main result, that the electrical
current I ≡ I

↑
1 + I

↓
1 is

I = G1 e δV + G2
(
δμ2

s1 − δμ2
s2

) + G3(δμs1 − δμs2)

+G4(δμs1 + δμs2)e δV . (7)

The formula is explicitly gauge invariant, as it depends only
on δV = V1 − V2. The calculation is furthermore current
conserving, with I2 = −I1 obtained by substituting δμs1 ↔
δμs2 and δV → −δV . We see the emergence of a nonlinear
spin to charge coupling term G2(δμ2

s1 − δμ2
s2), even in the

absence of any rectification term ∝δV 2. That such a term is
absent follows from our choice of a symmetric potential δU ,
in agreement with Ref. 15. There are four contributions to the
current, with conductances

G1 = 2e

h

∫
dE(−∂Ef )T (E), (8a)

G2 = e

h

∫
dE(−∂Ef )[∂ET (E)], (8b)

G3 = 2e

h

∫
dE(−∂Ef )δT (E), (8c)

G4 = e

h

∫
dE(−∂Ef )[∂EδT (E)], (8d)

which we discuss in detail below, first for a spin-insensitive
constriction, and second for a spin-sensitive constriction.

Spin-insensitive constriction. We first consider δT = 0 in
Eq. (2), in which case G3 = 0 = G4, and focus our discus-
sion on a gate-defined QPC in a two-dimensional electron
gas (2DEG) GaAs heterostructure, with energy-dependent
transmission18

T (E) = {1 + exp[−2π (E − eαVg)/h̄ω]}−1. (9)

The transmission is easily tuned by an external gate voltage Vg ,
with a sensitivity set by the QPC characteristic energy scale
h̄ω and α the “lever arm” converting gate voltage into energy.
We take typical values h̄ω = 180 μeV, corresponding to the
Zeeman energy of 8 T field at the g factor g = −0.39, and
α = 0.05. We further fix μF = 8 meV, T = 0.1 K, and spin
accumulations δμs2 = 0 and δμs1 ≡ δμs = 0.1%μF , which
should be magnetoelectrically achievable.16

We are now ready to investigate the electric response of the
circuit. First, we assume that both leads are held at the same
potential. Even in this case, the spin accumulation generates a
finite current, due to the second term in Eq. (7). Its magnitude is
determined by the nonlinear conductance G2 in Eq. (8b), which
we plot in Fig. 2(a). It is proportional to ∂ET , and thus maximal
when the QPC is half open, T = 0.5. The current is then

I = G2δμ
2
s ∼ e/h

max(kBT ,h̄ω/2π )
δμ2

s , (10)

and we plot it in Fig. 2(b). For our choice of parameters, the
current is of the order of tens of pA, which is well above the
experimental detection limit. The dependence of the current
signal on max(kBT ,h̄ω/2π ) is demonstrated in Figs. 2(c) and
2(d). Decreasing kBT at fixed h̄ω (h̄ω at fixed kBT ), the signal
first increases before it saturates when kBT � h̄ω.
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FIG. 2. (a) Nonlinear conductance G2 given in Eq. (8b). (b)–(d)
Current, Eq. (7) for zero bias, δV = 0, as a function of (b) gate voltage
determining the QPC transmission [see Eq. (9)], (c) temperature, and
(d) QPC energy resolution in units of the magnetic field.

Alternatively, terminal 2 can be operated as a floating probe.
In this case, a finite voltage drop develops, which we find by
setting I1 = 0. One obtains

e δV = −G2δμ
2
s /G1. (11)

We see that the current is converted into a voltage by the linear
conductance G1, given in Eq. (8a) and plotted in Fig. 3(a). This
agrees with the already mentioned absence of a rectification
term in our symmetric QPC.15 We plot the signal voltage in
Fig. 3(b). In the region where the QPC is closed (Vg � −h̄ω),
Eq. (11) gives an unphysical saturation of δV (dashed line).
To remove this artifact, we add a small constant to G1,
which enforces that δμs1 does not influence V2 if the QPC is
closed. Then the electric signals (current or voltage) in the two
protocols just discussed behave similarly, I,V ∝ G2δμ

2
s . For

spin-insensitive constrictions, we see that the electric response
is quadratic in the spin accumulation. The qualitative picture
for this effect is the following. At zero bias, V = 0, a finite spin
accumulation δμs on one side of the constriction drives two
counterpropagating currents in the two spin subbands. Since
these two currents flow at different energies, they do not cancel
exactly when the conductance is energy dependent.

This result is not specific to a QPC, which we next replace
by a Coulomb-blockaded quantum dot. Neglecting inelastic
processes and near resonance, its low-temperature transmis-
sion is given by19 T (E) = 	(1)	(2)/[(E − E0)2/h̄2 + (	/2)2],
with the tunneling rates 	(1) and 	(2) of the resonant level to
the left and right leads, 	 = 	(1) + 	(2), and the resonance
peak position E0. At E − E0 = ±h̄	/2

√
3, ∂ET (E) takes its

maximal value ±9	(1)	(2)/
√

3	3. Because T (E) differs from
its QPC expression, Eq. (9), in its energy dependence, the shape
of the quantities plotted in Fig. 2 will be different; most notably,
the signal changes sign upon crossing the resonance. However,
the maximal current magnitude is still given by Eq. (10) with
	 replacing ω.

Spin-sensitive constriction. We next consider the case when
δT �= 0 in Eq. (2), when the QPC is made spin sensitive, e.g.,
by an external Zeeman field. We assume that the field is parallel
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FIG. 3. (a) Linear conductance G1, Eq. (8a). (b) Voltage, cal-
culated according to Eq. (11) (dashed line) and adding a constant
0.1 e2/h to G1 (solid line). (c) Current in external magnetic
field antiparallel (solid line) and parallel (dashed line) to the spin
polarization direction. The arrow denotes the zero current position,
and the thin line is a guide to the eye. (d) Second derivative of the
current with respect to V and B.

to the spin accumulation δμs1 and that it is sufficiently weak
that the latter is not influenced. Equation (9) becomes

T σσ (E) = {1 + exp[−2π (E − σμB − eαVg)/h̄ω]}−1,

(12)

where the Zeeman energy μB is added or subtracted from
the electron’s energy depending on its spin. Here, B is the
magnetic field, μ = (g/2)μB and μB is the Bohr magneton.
To linear order in B, we then have δT = −μB ∂ET . We see
that a term linear in the spin accumulation has appeared, whose
magnitude is given by the conductance G3, Eq. (8c). This is
a linear response term, similar to the one reported in Ref. 11,
giving an odd magnetoresponse of the electric current through
a QPC in the presence of a spin current. This term allows to find
the sign of the spin accumulation, which is impossible for a
spin-insensitive probe. This is demonstrated in Fig. 3(c), where
we plot the current as a function of the magnetic field. Applying
the field antiparallel (for g < 0 as in GaAs heterostructures)
to the spin polarization direction, the Zeeman energy penalty
compensates for larger transmission at higher energies. The
compensation is exact (the current becomes zero) if

δμs = gμBBc. (13)

Remarkably, determining the compensation field Bc alone
allows to measure both the magnitude and direction of the
spin accumulation.

For spin-sensitive constrictions, the conductance G4 gives
an interesting contribution to the current, which is coupled to
the average spin accumulation δμs1 + δμs2 and the voltage
bias δV . We rewrite this contribution as

G4(δμ2 + δμ1)e δV = G4

(
μ

↑
1 + μ

↑
2

2
− μ

↓
1 + μ

↓
2

2

)
e δV,

(14)
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which makes it clear that this term describes two different
rectification currents in the two spin subbands which are
uncompensated if (i) the transport in the subbands happens at
different energies, (ii) there is a finite bias, and (iii) the probe
transmission is both spin and energy sensitive. Experimentally,
this contribution can be identified from the current derivative
with respect to both the applied bias and the external field, as
in Ref. 20. We plot this contribution in Fig. 3(d) where the
antisymmetric shape of G4 ∝ ∂2

ET strongly contrasts with the
symmetric conductances G2 and G3.

Conclusions. We have shown how spin accumulations can
be converted into electric signals in mesoscopic systems with
energy-dependent, but spin-conserving transmission. When
transport is spin-independent and in the absence of voltage
bias, the conversion occurs in the nonlinear regime and
the electric signal is quadratic in the spin accumulation. In
submicron structures, such nonlinearities have to be treated
self-consistently in local electrostatic potentials generated by
the finite applied biases. We did that within a simplified
mean-field approach, which resides in neglecting the spatial
structure of the potential changes δU (r). It is reassuring that
the nonlinear signal arises within this approximation, which
restrains from details of the constriction. Further, device spe-
cific, spin rectifying effects may arise from the spatial effects
in δU (r), along the lines of Ref. 15. We also note that for no
applied bias our approximation becomes exact since δU → 0.

In the case of transmission through a QPC, Eq. (10) suggests
that it is its energy resolution, with h̄ω � 2–3 K typically,
rather than the temperature, which limits the signal magnitude

and hence the sensitivity of our approach. Alternatively, a
Coulomb-blockaded quantum dot can be used, where the
resolution is given by the tunneling width which can easily
reach h	 � 0.1 K or less (see, e.g., Ref. 21). Close to
resonance, we would expect such a quantum dot to enhance
the signal by at least one order of magnitude compared to the
results shown in Fig. 2(d).

Finally, we estimate the minimal detectable spin accumu-
lation. Being a DC measurement, the signal-to-noise ratio is
ultimately limited by a device-specific 1/f noise. It sets a
lower limit on the measurement bandwidth 
, below which
1/f dominates the thermal and shot noises. In a B = 0 = V

measurement the signal is given by Eq. (10). For a small
spin accumulation, δμs � 4kBT , the thermal noise dominates,
S = 4kBT G1, with G1 ≈ e2/h, where we used Eq. (8a)
for a half-open QPC. The signal-to-noise ratio, I/

√
2πS
,

becomes one for

δμs =
√

2 max(h̄ω,2πkBT )
√

h̄
kBT ,

which gives δμs = 5 μeV using T = 1 K, h̄ω = 180 μeV, and
a realistic bandwidth 
 = 10 kHz.
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